
Binary Relations II



Outline for Today

Proofs Involving Binary Relations

• Equivalence Relation Proofs

• An Alternate Perspective on Partitions

• Proofs Involving Multiple Relations



Recap from Last Time



Reflexivity

∀a ∈ A. aRa
(“Every element is related to itself.”)



Symmetry

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)



Transitivity

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)



Equivalence Relations

An equivalence relation is a relation that 
is reflexive, symmetric and transitive.

Some examples:

• x = y

• x ≡ₖ y

• x has the same color as y

• x has the same shape as y.



Irreflexivity

∀a ∈ A. aR̸a
(“No element is related to itself.”)



Asymmetry

∀a ∈ A. ∀b ∈ A. (aRb → bR̸a)
(“If a relates to b, then b does not relate to a.”)



Strict Orders

A strict order is a relation that is 
irreflexive, asymmetric and transitive.

Some examples:

x < y.

a can run faster than b.

A ⊊ B (that is, A ⊆ B and A ≠ B).



Let’s do some proofs!



Equivalence Relation Proofs

• Let's suppose you've found a binary 
relation R over a set A and want to prove 
that it's an equivalence relation.

• How exactly would you go about doing 
this?



An Example Relation

Consider the binary relation ~ defined over the set ℤ:

a~b if    a+b is even

Some examples:

0~4       1~9       2~6       5~5

Turns out, this is an equivalence relation! Let's see how 
to prove it.

We can define binary relations by giving a rule, like this:

a~b if      some property of a and b holds

This is the general template for defining a relation.
Although we're using “if” rather than “iff” here, the two 
above statements are definitionally equivalent. For a 
variety of reasons, definitions are often introduced with 
“if” rather than “iff.” Check the “Mathematical 
Vocabulary” handout for details.



What properties must ~ have to be an 
equivalence relation?

Reflexivity

Symmetry

Transitivity

Let's prove each property independently.



a~b if   a+b is even

Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
prove that a~a. From the definition of the ~
relation, this means that we need to prove that
a+a is even.

To see this, notice that a+a = 2a, so the sum 
a+a

can be written as 2k for some integer k 
(namely,

a), so a+a is even. Therefore, a~a holds, as
required. ■
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What is the formal definition of reflexivity?

∀a ∈ ℤ. a ~ a

Therefore, we'll choose an arbitrary integer a, then
go prove that a ~ a.
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(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■
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An Observation



a~b if   a+b is even
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Proof: Consider an arbitrary a ∈ ℤ. We need to
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(namely, a), so a+a is even. Therefore, a~a
holds, as required. ■

The formal definition of reflexivity
is given in first-order logic, but

this proof does not contain any first-order logic 
symbols!
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b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

The formal definition of transitivity
is given in first-order logic, but

this proof does not contain any first-order logic 
symbols!



First-Order Logic and Proofs

• First-order logic is an excellent tool for giving 
formal definitions to key terms.

• While first-order logic guides the structure of 
proofs, it is exceedingly rare to see first-order 
logic in written proofs.

• Follow the example of these proofs:

• Use the FOL definitions to determine what to 
assume and what to prove.

• Write the proof in plain English using the 
conventions we set up in the first week of the 
class.

• Please, please, please, please, please 
internalize the contents of this slide!



Another Perspective on Partitions



ba cb ac

∧ →

The question we are asking the sage: “Are 
these two in the same equivalence class?”



∧ →aRb bRc cRa



∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)



∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)

A binary relation 
with this property 
is called cyclic.



Theorem: A binary relation R over a set A
is an equivalence relation if and only if it is 

reflexive and cyclic.
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Lemma 1: If R is an equivalence relation over a set A, then R
is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some
set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is reflexive, 
symmetric, and transitive. Consequently, we already know that 
R is reflexive, so we only need to show that R is cyclic.

To prove that R is cyclic, consider any arbitrary a, b, c ∈ A
where aRb and bRc. We need to prove that cRa holds. Since R is 
transitive, from aRb and bRc we see that aRc. Then, since R is 
symmetric, from aRc we see that cRa, which is what we needed 
to prove. ■
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Notice how the first few sentences of this proof mirror the 
structure of what needs to be proved. We’re just following 

the templates from the first week of class!
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Notice how this setup mirrors the first-order definition of cyclicity:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)

When writing proofs about terms with first-order definitions, it’s critical to 
call back to those definitions!
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to prove. ■

Although this proof is deeply informed by the first-order definitions, notice that 
there is no first-order logic notation anywhere in the proof. That’s normal – it’s 

actually quite rare to see first-order logic in written proofs.
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Lemma 2: If R is a binary relation over a set A that is cyclic
and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that
is cyclic and reflexive. We need to prove that R is an
equivalence relation. To do so, we need to show that R is
reflexive, symmetric, and transitive. Since we already
know by assumption that R is reflexive, we just need to
show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any 
arbitrary a, b ∈ A where aRb holds. We need to prove that bRa is 
true. Since R is reflexive, we know that aRa holds. Therefore, by 
cyclicity, since aRa and aRb, we learn that bRa, as required.

Next, we'll prove that R is transitive. Let a, b, and c be any 
elements of A where aRb and bRc. We need to prove that aRc. 
Since R is cyclic, from aRb and bRc we see that cRa. Earlier, we 
showed that R is symmetric. Therefore, from cRa we see that 
aRc is true, as required. ■
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First, we'll prove that R is symmetric. To do so, pick any 
arbitrary a, b ∈ A where aRb holds. We need to prove that bRa is 
true. Since R is reflexive, we know that aRa holds. Therefore, by 
cyclicity, since aRa and aRb, we learn that bRa, as required.

Next, we'll prove that R is transitive. Let a, b, and c be any 
elements of A where aRb and bRc. We need to prove that aRc. 
Since R is cyclic, from aRb and bRc we see that cRa. Earlier, we 
showed that R is symmetric. Therefore, from cRa we see that 
aRc is true, as required. ■

Notice how this setup mirrors the first-order definition of symmetry:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

When writing proofs about terms with first-order definitions, it’s critical to call 
back to those definitions!
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Since R is cyclic, from aRb and bRc we see that cRa. Earlier, we 
showed that R is symmetric. Therefore, from cRa we see that 
aRc is true, as required. ■

Notice how this setup mirrors the first-order definition of transitivity:

∀a ∈ A. ∀b ∈ A. ∀ c ∈ A. (aRb ∧ bRc → aRc)

When writing proofs about terms with first-order definitions, it’s critical to call 
back to those definitions!



Lemma 2: If R is a binary relation over a set A that is cyclic
and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that
is cyclic and reflexive. We need to prove that R is an
equivalence relation. To do so, we need to show that R is
reflexive, symmetric, and transitive. Since we already
know by assumption that R is reflexive, we just need to
show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any 
arbitrary a, b ∈ A where aRb holds. We need to prove that bRa is 
true. Since R is reflexive, we know that aRa holds. Therefore, by 
cyclicity, since aRa and aRb, we learn that bRa, as required.

Next, we'll prove that R is transitive. Let a, b, and c be any 
elements of A where aRb and bRc. We need to prove that aRc. 
Since R is cyclic, from aRb and bRc we see that cRa. Earlier, we 
showed that R is symmetric. Therefore, from cRa we see that 
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Refining Your Proofwriting

• When writing proofs about terms with formal 
definitions, you must call back to those definitions.

• Use the first-order definition to see what you’ll 
assume and what you’ll need to prove.

• When writing proofs about terms with formal 
definitions, you must not include any first-order 
logic in your proofs.

• Although you won’t use any FOL notation in your 
proofs, your proof implicitly calls back to the FOL 
definitions.

• You’ll get a lot of practice with this on Problem Set 
Three. If you have any questions about how to do 
this properly, please feel free to ask on Piazza or 
stop by office hours!



Let’s take a five minute break!
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Proofs Involving Multiple 
Relations



Let R be a binary relation over a set A. We can define a 
new relation over A called the inverse relation of R, 
denoted R-1, as follows:

xR-1y if        yRx

Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.



Let R be a binary relation over a set A. We can define a 
new relation over A called the inverse relation of R, 
denoted R-1, as follows:

xR-1y if        yRx

Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

Before we attempt the prove/disprove, when it’s a good idea to apply 
new definitions to a concrete example and 

make sure we fully understand what the definition means.



Let R be a binary relation over a set A. We can define a 
new relation over A called the inverse relation of R, 
denoted R-1, as follows:

xR-1y if        yRx

Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

What is the inverse of the < relation over ℤ?

The inverse of the < relation over ℤ is the > relation 
over ℤ. This is because x < y happens precisely when 
y > x.

What is the inverse of the = relation over ℤ?

The = relation over ℤ is its own inverse. Note that x = 
y happens precisely when y = x happens.Discuss with your neighbors!
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denoted R-1, as follows:

xR-1y if        yRx

Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

What is the inverse of the < relation over ℤ?

The inverse of the < relation over ℤ is the > relation 
over ℤ. This is because x < y happens precisely when 
y > x.

What is the inverse of the = relation over ℤ?

The = relation over ℤ is its own inverse. Note that x = 
y happens precisely when y = x happens.



Let R be a binary relation over a set A. We can define a 
new relation over A called the inverse relation of R, 
denoted R-1, as follows:

xR-1y if        yRx

Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

A good strategy for “prove or disprove” questions is to just try doing both a 
proof and a disproof.

If you find yourself having a hard time proving the claim, identifying why can 
often help you come up with a disproof and vice versa.    



Let R be a binary relation over a set A. We can define a 
new relation over A called the inverse relation of R, 
denoted R-1, as follows:

xR-1y if        yRx

Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

How would you set up a proof of this claim?

For an arbitrary relation R, assume that R is an 
equivalence relation, then show that R-1 also has to be 
an equivalence relation.  precisely when y > x.

How would you set up a disproof of this claim?

Find a specific example of a relation R such that R is 
an equivalence relation but R-1 is not.
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What We’re Assuming What We Need To Show

Relevant Definitions

Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

xR-1y if  yRx

R is an equivalence relation R-1 is an equivalence relation



What We’re Assuming What We Need To Show

Relevant Definitions

Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

xR-1y if  yRx

R is an equivalence relation
• R is reflexive
• R is symmetric
• R is transitive

R-1 is an equivalence relation
• R-1 is reflexive
• R-1 is symmetric
• R-1 is transitive



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

A great proofwriting strategy is to draw pictures – it’s often easier 

to reason about concrete circles, lines, and arrows than abstract mathematical 
definitions.



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

x y x y

We’ll use a red arrow
to denote that xRy

And a blue arrow to 
denote that xR-1y



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

R is reflexive
∀x ∈ A. xRx

x

We can always draw a red self-loop

Assumptions:



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

R is reflexive
∀x ∈ A. xRx

x

We can always draw a red self-loop

Assumptions:

R is symmetric
∀x ∈ A. ∀y ∈ A. (xRy → yRx)

If there’s a red arrow in one direction, we can draw one in the other direction

x y



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

R is reflexive
∀x ∈ A. xRx

x

We can always draw a red self-loop

Assumptions:

R is symmetric
∀x ∈ A. ∀y ∈ A. (xRy → yRx)

If there’s a red arrow in one direction,
we can draw one in the other direction

x y

R is transitive
∀x ∈ A. ∀y ∈ A. ∀z ∈ A.
(xRy ∧ yRz → xRz)

x

y

z

If you can get somewhere by 
following red arrows, you can draw 
a red arrow directly there



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

xR-1y if  yRx

When can we draw a blue arrow?

x y

R R-1



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

xR-1y if  yRx

When can we draw a blue arrow?

x y

If there’s a red arrow going one way

Then we can draw a blue arrow going the other way

R R-1



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

R-1 is reflexive
∀x ∈ A. xR-1x

x
We want to always be able
to draw a blue self-loop

Goal:

R R-1



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

R-1 is reflexive
∀x ∈ A. xR-1x

x
We want to always be able
to draw a blue self-loop

Goal:

Since we assumed R is reflexive,
we can put in this red self loop

R R-1



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

R-1 is reflexive
∀x ∈ A. xR-1x

x

Since there’s a red arrow going from x to x, we can draw a blue arrow going “the other way”, from x to x

Goal:

R R-1

Since we assumed R is reflexive,
we can put in this red self loop



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

Goal:

R R-1

R-1 is symmetric
∀x ∈ A. ∀y ∈ A.
(xR-1y → yR-1x)

x y

We want to say that if there’s a blue arrow in one direction, we can draw one in the other direction



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

Goal:

R R-1

R-1 is symmetric
∀x ∈ A. ∀y ∈ A.
(xR-1y → yR-1x)

x y

So we’ll assume this arrow exists

And prove that this arrow exists too



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

Goal:

R R-1

R-1 is symmetric
∀x ∈ A. ∀y ∈ A.
(xR-1y → yR-1x)

x y

So we’ll assume this arrow exists

And prove that this arrow exists too

Talk with your neighbors and 
see if you can work out how 

to do this. 

Remember that you can 
apply this definition

xR-1y if  yRx

in the other direction too



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

Goal:

R R-1

R-1 is symmetric
∀x ∈ A. ∀y ∈ A.
(xR-1y → yR-1x)

x y

Since there’s a blue arrow from x to y, we can draw a red arrow going the other way, from y to x

xR-1y if  yRx



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

Goal:

R R-1

R-1 is symmetric
∀x ∈ A. ∀y ∈ A.
(xR-1y → yR-1x)

x y

Since R is symmetric, we can use this arrow to draw a red arrow from x to y



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

Goal:

R R-1

R-1 is symmetric
∀x ∈ A. ∀y ∈ A.
(xR-1y → yR-1x)

x y

xR-1y if  yRx

Finally, since we have a red arrow from x to y, 
we can apply the definition of R-1 again to conclude that there’s a blue arrow from y to x



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

Goal:

R R-1

R-1 is transitive
∀x ∈ A. ∀y ∈ A. ∀z ∈ A.
(xR-1y ∧ yR-1z → xR-1z)

x z

We want to say that if we can get from x to z through an intermediary y, 
then we can draw an arrow straight from x to z

y



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

Goal:

R R-1

R-1 is transitive
∀x ∈ A. ∀y ∈ A. ∀z ∈ A.
(xR-1y ∧ yR-1z → xR-1z)

x z

So we’ll assume that these arrows exist

y

And prove that this arrow exists too



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

Goal:

R R-1

R-1 is transitive
∀x ∈ A. ∀y ∈ A. ∀z ∈ A.
(xR-1y ∧ yR-1z → xR-1z)

x z

y

We can apply the definition of R-1 to draw these two red arrows



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

Goal:

R R-1

R-1 is transitive
∀x ∈ A. ∀y ∈ A. ∀z ∈ A.
(xR-1y ∧ yR-1z → xR-1z)

x z

y

Then since R is transitive, we can draw this arrow



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

Goal:

R R-1

R-1 is transitive
∀x ∈ A. ∀y ∈ A. ∀z ∈ A.
(xR-1y ∧ yR-1z → xR-1z)

x z

y

Applying the definition of R-1 again gives us the arrow we desire!



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

R-1 is reflexive

x1

xRx
(R is reflexive)

xR-1x
(definition of R-1)

2

1

2



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

R-1 is reflexive

x

R-1 is symmetric

x y1

xRx
(R is reflexive)

xR-1x
(definition of R-1)

2

1

2

1

2

3

4

xR-1y
(by assumption)

yRx  
(definition of R-1)

1

2

xRy  
(R is symmetric)

3

yR-1x  
(definition of R-1)

4

yRx  
(definition of R-1)

1

2

xRy  
(R is symmetric)

3

4



Prove or disprove: if R is an equivalence relation over A, 
then R-1 is an equivalence relation over A.

R-1 is transitive

x z

y

R-1 is reflexive

x

R-1 is symmetric

x y1

xRx
(R is reflexive)

xR-1x
(definition of R-1)

2

1

2

1

3

4

xR-1y
(by assumption)

yRx  
(definition of R-1)

1

2

xRy  
(R is symmetric)

3

yR-1x  
(definition of R-1)

4

1 1

22

3

4

yRx  
(definition of R-1)

1

2

xRy  
(R is symmetric)

3

4

xR-1y and yR-1z
(by assumption)

yRx and zRy
(definition of R-1)

1

2

zRx  
(R is transitive)

3

xR-1z  
(definition of R-1)

4

2



Theorem: If R is an equivalence relation over A,
then R-1 is an equivalence relation over A.

Proof: Let R be an equivalence relation over a set A. We will
prove that R-1 is also an equivalence relation over A by
proving that R-1 is reflexive, symmetric, and transitive.



Theorem: If R is an equivalence relation over A,
then R-1 is an equivalence relation over A.

Proof: Let R be an equivalence relation over a set A. We will
prove that R-1 is also an equivalence relation over A by
proving that R-1 is reflexive, symmetric, and transitive.

To prove that R-1 is reflexive, consider any x ∈ A. We need to
prove that xR-1x. By definition, this means that we need to
prove that xRx. Since R is reflexive, we know that xRx holds.



Theorem: If R is an equivalence relation over A,
then R-1 is an equivalence relation over A.

Proof: Let R be an equivalence relation over a set A. We will
prove that R-1 is also an equivalence relation over A by
proving that R-1 is reflexive, symmetric, and transitive.

To prove that R-1 is reflexive, consider any x ∈ A. We need to
prove that xR-1x. By definition, this means that we need to
prove that xRx. Since R is reflexive, we know that xRx holds.

To prove that R-1 is symmetric, consider any x, y ∈ A where
xR-1y. We need to prove that yR-1x holds. Since xR-1y holds,
we know that yRx holds. Since R is symmetric and yRx is true,
we know that xRy is true. Therefore by definition of R-1, we
know that yR-1x holds.



Theorem: If R is an equivalence relation over A,
then R-1 is an equivalence relation over A.

Proof: Let R be an equivalence relation over a set A. We will
prove that R-1 is also an equivalence relation over A by
proving that R-1 is reflexive, symmetric, and transitive.

To prove that R-1 is reflexive, consider any x ∈ A. We need to
prove that xR-1x. By definition, this means that we need to
prove that xRx. Since R is reflexive, we know that xRx holds.

To prove that R-1 is symmetric, consider any x, y ∈ A where
xR-1y. We need to prove that yR-1x holds. Since xR-1y holds,
we know that yRx holds. Since R is symmetric and yRx is true,
we know that xRy is true. Therefore by definition of R-1, we
know that yR-1x holds.

Finally, to prove that R-1 is transitive, consider any x, y, z ∈ A
where xR-1y and yR-1z. We need to prove that xR-1z. Since
xR-1y and yR-1z, we know that yRx and that zRy. Since zRy
and yRx, by transitivity of R we see that zRx. Thus by

definition of R-1, we know that xR-1z holds, as required. ■



Next Time

• Functions

• How do we model transformations in a 
mathematical sense?

• Domains and Codomains

• Type theory meets mathematics!

• Injections, Surjections, and 
Bijections

• Three special classes of functions.



Use your intuition to ask 
questions, not to answer them

Thought for the weekend:


